Friday, February 21, 2020

February 21, 2020



01. SQUARE

Area = A * A

A – Length of one side

02. RECTANGLE


Area = L * B

L - Length
B - Breadth

03. CIRCLE

Area = p*R*R
              2

R- Radius of the Circle

04.EQUILATERAL TRIANGLE


h = ( a * Ö3) /2

A = (a2 * Ö3) / 4
B - Base of The Triangle
H – Height of the Triangle

5. ISOSCELES TRIANGLE





Area = c/4*sqrt (4a2 – c2)
ac - Base of The Triangle
a – Side of the Triangle

06. PARALLELOGRAM

Area = B * H

B – Base length
H – perpendicular Ht of Parellogram

07. TRAPEZOID

Area = (A+B)*H
H- Perpendicular distance btn Parallel sides

08. SECTOR OF CIRCLE

Area = Q*p*R2
              360

Where Q = Angle of the Sector
R = Radius of the Circle



09. AREA OF RHOMBUS:

Area = d1d2
            2

Where d1 and d2 are the diagonals.


10. SEGMENT OF CIRCLE:

A segment of the circle is that part of the circle contained between the arc and its chord.
Area = 2*L*H          Where L- Length of the Area    H - Rise of the arc
11. QUADRILATERALS:

A=0.5*d (p1 + p2)

Where A = area; d = Diagonal; p1 and p2 are the offsets of the Diagonal.

12. REGULAR HEXAGON:

A = (3 a2 Ö3)/2

Where A = area; a = side of the Hexagon

13 REGULAR OCTAGONS:

A = 2 a2 (1+Ö2)

Where A = area; a = side

14 REGULAR DODECAGONS (12 SIDES):

A = 6 a2 Ö(7/4  + Ö3)

Where A = area; a = side


15 ELLIPSE:

A  = Õ ab         C=DM

Where A = area; a = semi-major axis; and b= semi- minor axis; C= Circumference; multiplier.  If value of d/D = 0.2,0.3,0.4,0.5,0.6,0.7,0.8,and 0.9 then the corresponding multiplier (M) sill be 2.1010,2.1930,2.3013,2.4221,2.5527,2.6912,2.8361, and 2.9866 respectively.   D= a*2 and d=2*b.

11. IRREGULAR SURFACES:

Divide the area or Figure into an even number (n) of parallel strips by means of (n+1) ordinates, spaced at equal distances, d. Let the ordinates be yi

A. TRAPEZOIDAL RULE:

Area = d*((y0+yn)/2 + y1 +y2 +…+yn-1)

B. DURAND’S RULE:

Area = d*[0.4(y0 + yn) + 1.1(y1+yn-1)+y2+y3+…. +yn-1]

C. SIMSONS RULE:

Area = d*[( y0 + yn ) +4*(y1 + y3 +…..+yn-1) +2*(y2 + y4 + …… +yn-2)]

VOLUME:

1.CIRCULAR CONES: A Cone is a solid whose base is a circle and whose convex surface tapers uniformly to a point called the vertex.

Volume          = 1/3 X area of base X Vertical Ht.
Convex Area = ½ X Perimeter of base X Slant Ht.

2.RECTANGULAR SOLIDS:

i)              V = abc
ii)             V = A1c = A2b = A3a
iii)            V = Ö (A1A2A3)
iv)           V = 2 (ab + bc+ ca)
v)            D = Ö(a2+b2+c2)

Where V= Volume’; S = Whole surface; a = length; b- breadth; c = Depth; A1=Area of base; A2 = area of side; A3 = area of end; d = diagonal.

3.CUBES:

i)              V = a3
ii)             S = 6 a2
iii)            D = a Ö3
Where V = Volume; S = Whole surface; a = edge; D = Diagonal.

4.CYLINDERS:

i)              V = Õ r2 h
ii)             S = 2 Õ r (h+r)

Where V =Volume; S = whole Surface; r= the radius of base; h = height.



5.CYLINDRICAL RINGS:

i)                       V = Õ2/4 (R+r) (R- r) 2
ii)                     V = 1/32Õ  (C + c) (C – c) 2
iii)                    S = Õ2  (R2 – r2)
iv)                   S = ¼ (C2 – c2)

Where V = Volume; S= Whole Surface; R= Outer radius; r=inner radius; C= Outer Circumference;    c = Inner circumference.


6.PYRAMIDS AND CONES:

V = 1/3 Ah

Where V = Volume; A = area of base; h= height.


7.REGULAR TETRAHEDRONS:

i)              V = (2*Ö2/3) a3
ii)             S = 4 a2 Ö3
iii)            H = 2aÖ(2/3)

Where V = Volume; S = Whole Surface; 2a= edge; h= height


8.FRUSTRA OF PYRAMIDS, CONES and TRAPEZOIDAL VOLUME:

V= H/3 (A1 + A2 + Ö(A1 + A2)

Where V= Volume; h= height;
A1 and A2 are the ends; P and p are the perimeters of the ends; s = slant height.


9.FRUSTRA OF RIGHT CIRCULAR CONES:
i)              V= Õh/3 (R2 + r2 + Rr)
ii)             S = 0.5 s (C + c)
iii)            S = Õ s (R + r)

Where V = Volume; S = Curved Surface; R and r are the radii of the ends; C and c are the circumferences of the ends; s = slant height; h= perpendicular height.

10.SPHERES:

i)              V = Õ d3/6
ii)             V = 4/3 Õ r3
iii)            S = Õ d2
iv)           S = 4Õ r2

Where V = Volume; S = Surface; d= Diameter; r = radius.

11.SPHERICAL SHELLS:

i)              V = Õ/6 (D3 – d3)
ii)             V = 4Õ/3 (R3 – r3)
Where V = Volume; R=Outer radius; r = inner radius; D = Outer diameter;
d= inner diameter;

12.ZONES OF SPHERES:

i)              V = Õ h/3 [3(r1 2 + r22)+ h2]
ii)             S = Õdh

Where V = Volume; S = Curved surface; r1 and r2 are the radii of the two ends; h = height;
d = dia of the sphere.


13.Square of the same area as a circle

Side = diameter X 0.88623


14.Circle of the same area as a Square

Diameter = side x 1.12838


15.PARABOLAS AND PARABLOIDS:

Area of space within the parabola = Base x 2/3 perpendicular height

Volume of parabloid (Solid) = ½ Õr2h

Where r = radius of the base of the paraboloid
h = height









0 comments:

Post a Comment